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Abstract—This paper presents some results of a hardware 
biped robot learning to walk in a constrained environment using 
Deep Q-Learning Neural Network (Reinforcement Learning). 
The idea is to implement a simple deep Q-Learning model on       
a hardware biped robot, with six degrees of freedom, to learn    
to walk. The input state of the model orientation of the robot     
at a given instant and the output is an action representing the 
direction of the rotation of the stepper motor corresponding to a 
leg joint determined by the action selection policy. The rewards 
are determined by trial and error method. The robot tries to 
learn to walk without any simulations or pre-trained models. The 
hardware robot is suspended, preventing it from falling during 
the process of learning and it is made to learn to walk on a freely 
movable platform. The deep Q-learning model runs on the local 
machine and the hardware robot communicates with the system 
via USB Serial port communication. 

Keywords—Reinforcement Learning, Deep Q-Learning, Biped 
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I. INTRODUCTION 

Exhibiting human like actions and behavior is essential for 

robots that are intended to help, service and co-exist with 

humans. Amongst many complex control problems that are 

involved in achieving human like behavior in robots, biped  

walking or the action of two legged waking is one of the    

most challenging tasks. So far simulations and pre-trained 

models have been the standard approaches to implement 

learning of biped walking by hardware robots. The objective 

of this paper is to create and implement a system architecture 

which will enable the hardware biped robot to learn to walk 

using reinforcement learning without any pre-trained models 

or simulations. This proposed  method  overcomes  the  bias  

in learning trajectories and policies that may occur in a 

simulation environment. Also, it is not possible to recreate all 

the dynamics of the real world in simulation. Previous studies 

and approaches on Biped walking of robot using reinforcement 

learning have explored a variety of methods as in [1], [2], [3], 

[4]. [5] is a model based reinforcement learning approach that 

achieves the given tasks much faster without the knowledge  

of the environment. However, [6] requires lot of  time  to  

learn the controller and [7] needs a highly stable mechanical 

system. Some bipeds implemented tried different body with 

short torso, rounded foot and without ankle joints. These biped 

robots have only 4 degrees of freedom and controlling biped 

walking trajectories with the famous ZMP approach [8], [9] is 

impossible or very difficult to implement hence, an alternative 

controller design must be used. The body dynamics of human 

given in [10] is used as the nominal trajectory in Poincare- 

Map-Based approaches. Interestingly many alternatives have 

focused on matching the natural dynamics of the biped to 

desired walking cycle timing. In [3] they have used phase os- 

cillators to estimate the appropriate walking cycle timing [11]. 

A chapter on [12] describes a biologically inspired two 

layered biped learning system comprising a bottom level CPG 

(central pattern generator) and a top-level RL (reinforcement 

learning) module. In order to cope with the change in the en- 

vironment, in the above mentioned approach, they have used a 

mental simulation based reinforcement learning approach [5], 

[13], [14] in which the learning system interacts only with 

the above mentioned mentally simulated model. So, if  the 

environment model is identified properly, policy parameters 

can be improved within the environment, without the need for 

physical biped robots. However, this model is not suitable for 

implementing physical biped robots. 

Although many alternatives of biped locomotion has been 

studied for a long time,  it  is  only  in  the  past  20  years,  

that physical robots have started to perform bipedal walking, 

this can be  seen  as  the  result  of  development  of  super  

fast computers. There were static walking robots [15]. The 

major drawback of this was that the control architecture in 

these models had to ensure that the center of gravity(COG) 

projection on the ground was always inside the area of foot 

support. This approach was inefficient because only slow 

walking speeds was possible, that too only on flat surfaces.  

The alternative was robots with dynamic walking [16], In these 

robots the COG projection can be outside the area of support 

of foot, but the zero momentum point (ZMP), which is the 

point where the total angular momentum is zero, cannot be 

outside the area of support of the foot. With dynamic walking 

robots faster walking speeds was possible, running [17], stair 

climbing [18], [19], execution of successive flips [20], and 

even walking with no actuators [21]. Planar biped robot under 
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a pure sensor driven controller such [22] is an example of real 

time physical robots with real time interaction with the virtual 

learning agent. 

II. MATERIALS AND METHODS 

The connections between each hardware component is es- 

tablished using standard 10 cm, Male - Male, Male - Female, 

Female - Male and Female - Female jumper cables and single 

lead wires. The connection between the microcontroller and 

the local machine is established using  a  USB  AB  cable.  

The circuit is connected using 48 mm x 35 mm x 10 mm   

mini breadboards. These set of  3  breadboards  is  enclosed  

by the external container. The  actuators  used  are  28BYJ-  

48 stepper motors which takes 2048 steps for one complete 

revolution. It is an unipolar five wired stepper motor and it 

requires a motor driver,  ULN2003A is used, for connecting   

it to the microcontroller. The biped robot uses ADXL345 

accelerometer. It can take 13-bit high resolution measurements 

enabling identification of inclination changes less than one 

degree. The microcontroller use is the Arduino Mega 2560 

based on the ATmega2560. It can connect to a computer with 

AB/USB cable. The power source used is a 7.5 Volt, 1100 

mAh two cell rechargeable Lithium-ion battery. It is housed 

inside the external container along with the microcontroller 

and the stepper motor drivers. The body or the central frame 

of the biped robot is a 90 mm x 90 mm x 45 mm cuboid 

shaped 4 mm thick cardboard box. This box encloses the 

breadboard circuit of the accelerometer sensor along with 

indication LED lights. These LED lights indicates the state   

of the communication with the local  machine.  The  body  

also houses all the wiring for the six stepper motors and 

accelerometer from the external container. The legs of the 

biped robot are a set of 3-D printed models. The 3-D models 

were first developed using two software Blender 2.81 and 

Autodesk Inventor Professional 2020 based on the dimensions 

of the stepper motor, body,  and the ball bearings. Each leg    

is divided into three components; upper leg and lower leg 

depicted in Fig. 1, the foot shown in Fig. 2 and body-leg 

interface shown in Fig. 3. 

A. Reinforcement Learning 

Reinforcement learning differs from supervised learning in 

the way that it does not need labeled input/output pairs to be 

 
 

 

Fig.  1.   Lower Leg 

present. Amongst several algorithms for reinforcement learn- 

ing [23], this approach uses Deep Q Learning. Typically, the 

environment is stated in the form of a Markov decision process 

or MDP, because many reinforcement learning algorithms for 

this context utilize dynamic programming techniques. 

1) Markov Decision Process: A Markov Decision Process 

is a tuple (S, A, T, R) where; 

• S is the set of different states, in this case state is 

represented by the 3 - Dimensional orientation values plus 

its sign-inverted values (x, y, z, -x, -y,  -z) of the robot at  

a given instant t. 

• A represents a set with different actions that can be taken 

at each time t. There are twelve actions that the robot can 

take, move each of the six stepper motor in clockwise or 

anti-clockwise direction 

• T is called the transition rule: 

– T :(at   A, st   S, st+1   S)    P(st+1 st , at ) where 

P(st+1 st , at ) is the  probability that the future state 

is st+1 given that the current state is st and  the  

action played is at. The distribution of probability   

of the future states at time t + 1 is  given  by  T  

given the current state and the action taken at time 

t. Hence, we can predict the future state st+1 by 
a drawing a random value from the distribution 

T : st+1 ∼ T (at , st , .) 
• R is the reward function: 

– Reward gained for choosing action at  in the state     

st is given by rt . 

After defining the MDP, it is important to remind that it relies 

on the following assumption: the probability of the future state 

 
 

Fig.  2.  Foot 

 

Fig. 3. Body - Leg Interface 
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st+1 only depends on the current state st and action at , and 

doesn’t depend on any of the previous states and actions. That 

is: 

P(st+1 s0, a0, s1, a1, ..., st , at ) = P(st+1 st , at ) 
Many complex MDP’s  are used in robot navigation such   

as [24]. 

2) Policy Function: The policy function π is exactly the 

function that, given a state st , returns the action at: 

π : st S at A 

Let’s denote by Π the set of all the policy functions. Then 

the choice of the best actions to play becomes an optimization 

problem. Indeed, it comes down to finding the optimal policy 
π 

∗ 
that maximizes the accumulated reward: 

π
∗=ar gmaxπ∈Π 

.
t ≥0  R(π (st ), st ) 

• When TDt (at , st ) is high, it receives "good surprise". 

• When TDt (at , st ) is low, it receives "frustration". 

The temporal difference calculated is used in the last next step 

of the Q learning algorithm to reinforce (a,s) pair from time t-

1 to t, with the help of the equation: 

Qt (at , st ) = Qt−1 (at , st ) + αTDt (at , st ) 
In this point of view, the Q-values measure the accumulation 

of the positive or negative temporal difference associated with 

the state action pair (at , st ). In the surprise or positive case, 

reinforcement takes place, and in the frustration or negative 

case, weaking of the AI takes place. The objective is to learn 

Q-values that will fetch more positive values. 

Based on this, the decision of action to be taken usually 

relies on the Q-value Q(a , s ). If the action a taken in the state 
3) Future   Cummulative   Reward: Rt = R(at , st ) + 

R(at+1, st+1) + ... + R(an, sn ) = rt + rt+1 + ... + rn 
However we can still improve the model. The elements rt , 

rt+1, ..., and rn are values we are trying to estimate with the 

reward function R. At time t we are unsure of the reward in 

this future time, the more we look into the future the more 

uncertain it is. In other words, the larger is t’ , the larger is the 

variance of the estimated reward rt+tj . So, in order to fix that 

we have to discount each of the single rewards in the future, 

and the discount has to subsequently increase based on how 

further we are in to the future. So to do this we have to take 

the discounted sum of rewards: 

Rt = rt + γrt+1 + γ2rt+2... + γn−t rn 

where γ ∈ [0, 1]. That way the higher is t’, the smaller is 

γt’ , and therefore the more rt+tj is discounted. γ is called the 
discount factor. The closer γ is to 0, the more the AI will try 

to optimize the current reward rt . The closer γ is to 1, the 

more the AI will aim to optimize the future reward. 

4) Q-Value: Each state and action pair (a,s) we have an 

associated numeric value Q(a,s): 

Q : (at A, st S) Q(at , st ) R 

We will say that Q(a, s) is "the Q-value of the action a 

played in the state s". 

5) Temporal Difference: At the beginning t = 0, all the Q- 
values are initialized to 0. Now let’s  suppose we are at time   

t, in a certain state st . We play the action at and we get the 

reward rt . Then we take a random draw from the T(at , st , .) 
distribution, which leads us to the next state st+1: 

st+1 T (at , st , .) 
We can now introduce the temporal difference, which is at 

the heart of Q-Learning. The temporal difference at time t, 

denoted by TDt (at , st ), is the difference between: 

• rt + γmaxa (Q(a, st+1)), γ [0, 1], that is the reward rt 

obtained by playing the action at in the state st , plus a 

percentage (which is our previous discount factor γ) of 
the Q-value of the best action played in the future state 
st+1, 

• and Q(at , st ), that is the Q-value of the action at  taken  

in the state st , thus leading to 

TDt (at , st ) = rt + γmaxa (Q(a, st+1)) Q(at , st ) 

TDt (at , st ) is like an intrinsic reward. The Q-values will be 

learned in such a way that: 

st is has a large Q value Q(at ,st ) associated to it, the AI has 

higher chances of choosing at . And if the Q value associated is 
low the AI will have less inclination in considering the action 

at . 
There are several ways of obtaining the best action to take. 

First, when being in a certain state st , we could simply take    

a with which we have the maximum of Q(a, st ): 
a = argmaxa (Q(a, s)) 

But experience has shown that this is not the best option.   

A better solution is the softmax method. The softmax method 

consists of considering for each state s the following distribu- 
tion: 

ex p(Q(s, a))τ 
s ex p(Q(s, aj))τ 

We get the action to take by picking a random value from 
that distibution: 

a ∼ Ws (.) 

III. PROPOSED SYSTEM 

The idea is to let the robot learn to walk without any 

simulations or pre-trained models. This is ideal because it 

overcomes bias in learning trajectories and policies that may 

occur in a simulation environment. And also taking into 

consideration that all the dynamics of the real world cannot be 

recreated in a simulation, this approach seems to be a potential 

solution. However, letting the physical robot to learn without 

any heuristic data comes with a price. The problem is the  

time that the physical robot takes to fall, get up and learn to 

walk compared to the incredibly fast simulations that achieves 

the same in significantly less time. In order to compensate   

for this time factor, the proposed system involves a robot that 

learns to walk in a constrained environment which will speed 

up the learning process since, the process(actions) of falling 

and getting up is eliminated as described below, this makes the 

system comparatively faster than a free roaming robot learning 

to walk by falling and getting up. 

The system consists of two parts, as depicted in Fig. 4,    

one  the  neural  network  model  that  exists  in  the  local 

machine and second the physical robot and its associated 

components. The neural network model uses a simple deep Q- 

learning algorithm with three hidden layers. The first hidden 

layer has twenty-four nodes, the second with eighteen nodes 

and the third with fourteen nodes. The input and output layer 
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had six and twelve nodes respectively. The neural network 

was fully connected with random initial weights and Adam 

optimizer [25]. The model parameters such as the learning 

rate, discounting factor(gamma) and temperature parameter 

are determined by experimentation. The modal uses Smooth 

L1-loss as the loss function. The temperature parameter is a 

random value obtained by trial and error, it determines how 

sure the RL agent is in taking the  action.  It  is  multiplied 

with the softmax value of the actions. The 3-Dimensional 

orientation of the robot at a particular instant is obtained from 

an accelerometer sensor and it along with its sign inverted 

values (positive to negative and vice versa) is used as the 

input state to the deep neural network. The accelerometer 

readings are of the form (x, y, z, -x, -y,  -z) which represent  

the acceleration of the robot in the respective axis expressed  

in (m/s2) or in G-forces (g). Since the robot doesn’t undergo 

very fast movements the value is usually in the range of -2 to 

2 Table I . Using the orientation data the level of tilt of the 

robot is determined. 

If the tilt exceeds a particular threshold value, which again 

is determined by experimentation, the reinforcement learning 

agent is given the maximum negative reward as going beyond 

the threshold tilt value corresponds to falling of the robot 

however, the robot doesn’t fall as it is suspended and continues 

to walk. This is done overcome the significant delay of the 

robot actually falling down and getting back up. Maintaining 

the tilt within a certain range provides the agent with a small 

positive reward enabling to understand that it is supposed to 

maintain the balance. The output layer of the deep neural 

network consists of twelve neurons, corresponding to the 

twelve actions or Q-values, where each Q-value represents the 

rotation of the corresponding stepper motor by ten steps in  

that particular direction, six clockwise and six anti-clockwise 

respectively for each stepper motor. Each time the best action 

is determined by the action selection policy which takes the 

softmax of the twelve values which is then multiplied with the 

temprature parameter. 

The hardware biped robot consists of two physical sections, 

one is the body of the biped  walking  robot  with  the  two 

legs housing all the six stepper motors and the accelerometer 

sensor, second is the external container housing the Arduino 

microcontroller and the power source which is connected to 

local machine via USB Serial port communication at 250000 

bit baud rate. The six joints of the legs I.e. hip,  knee and  

ankle joints of both the leg are connected to the respective 

stepper motor on one side and a small 6 mm(inner diameter) 

ball bearing on the other side. The ball bearing is used to 

distribute the load of body on the leg thereby reducing the 

amount of strain on the stepper motor. The robot is suspended 

from the top support and stands on top of two discs. These 

discs are freely movable, hence when the robot tries to walk 

the discs acts as a moving platform. The suspension prevents 

the robot from falling and stepping out of the discs. 

In order to prevent still state where the robot uses the 

suspension to stay still and not move there by ensuring 

continuous gain of positive reward, a small negative reward    

is given I.e. the robot is punished if it stays still instead of 

trying to walk. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Biped Robot with the walking environment 

TABLE I 
SAMPLE ACCELEROMETER READINGS 

 

   Xa  Ya  Za  

1.05 0.04 0.11 
1.02 -0.07 0.11 
1.04 -0.02 0.19 

   0.98 0.01 0.07  

 

IV. RESULT 

A gradual increase in the rewards obtained by the  RL  

agent can be seen after experimenting with different network 

parameters. Fig. 5 shows the reward window score curve after 

3000 epochs starting with random initial weights and with 

temperature parameter(T) 700. 

 

 

 

 

 

Fig. 5. 3000 epochs T = 700 
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The reward window score is value that can be used to 

visually represent whether the RL agent is learning the right 

set of actions, in this case learning to walk. It is the average of 

the last n rewards obtained by the RL agent, here the value of 

n used is 1000. This score is plotted against each epoch. The 

initial spike in all the curves are due to the stable standing 

state before the first action performed by the biped robot. In 

order to identify global maxima, several times the model was 

run with different initial weights, number of epochs and 

temperature parameters. Fig.   6 shows the reward curve with 

4000 epochs and temperature parameter set to 7000. 

As we can see from Fig. 7 and Fig. 8 setting the temperature 

parameter T to smaller value decreases the reward scores and 

also results in not so stable action selections, even though the 

number of epochs is higher (6000). 

After exploring and tweaking other parameters such as the 

learning rate and discounting factor gamma, a model with a 

close to stable action selection and some gradual increase in 

the reward widow was obtained, as seen in Fig. 9, Fig. 10. 

V. FUTURE WORK 

The results from this approach shows that there is a potential 

of physical robots learning to walk without pre-trained models 

and simulations, however to be able to establish it concretely 

many factors have to be ensured and validated about the 

system. The motors and microcontroller used in this system 

are those that are available for  many  other  use  cases  and 

not custom manufactured for this purpose. Also, there are 

several stages that lack precision and completeness in this 

implementation, when it comes to the hardware environment, 

as most of them were built with commercially available tools 

and materials. With respect to the reinforcement learning 

agent several different aspects are yet to be explored, such as 

different optimizers, network architecture, discounting factor, 

etc... Improving on these factors while also considering meth- 

ods that can scale this approach well, allowing it to fit into 

larger and complex systems to achieve autonomous learning 

 

 

 
 

  

 

Fig. 6. 4000 epochs T = 7000 Fig. 8. 3000 epochs T = 100 

 

 

 

  
 

 
Fig. 7.   6000 epochs T  = 100 Fig. 9. 1000 epochs T = 15000 
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Fig. 10.   1000 epochs T =  30000 

 

 
by robots without simulations will be ideal. 

 

VI. CONCLUSION 

The implementation of biped robot learning to walk with 

deep Q learning without pre-trained models and simulations 

was successful in the way that the reinforcement learning agent 

was able to obtain a gradual positive growth in the reward 

window score as mentioned in the results. The model was   

able to learn to maintain balance with the given 3 dimensional 

orientation input, also slowly increasing its stability with 

respect to its exploration of actions. 
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