
© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRDV06013 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 50

Biped Walking Robot Using Reinforcement

Learning

Arjun C R

Department of Computer Science and Engineering, SRM

Institute of Science and Technology,

Chennai,

India

Akila V
Department of Computer Science and Engineering, SRM

Institute of Science and Technology,

Chennai,

India

Abstract—This paper presents some results of a hardware
biped robot learning to walk in a constrained environment using
Deep Q-Learning Neural Network (Reinforcement Learning).
The idea is to implement a simple deep Q-Learning model on
a hardware biped robot, with six degrees of freedom, to learn
to walk. The input state of the model orientation of the robot
at a given instant and the output is an action representing the
direction of the rotation of the stepper motor corresponding to a
leg joint determined by the action selection policy. The rewards
are determined by trial and error method. The robot tries to
learn to walk without any simulations or pre-trained models. The
hardware robot is suspended, preventing it from falling during
the process of learning and it is made to learn to walk on a freely
movable platform. The deep Q-learning model runs on the local
machine and the hardware robot communicates with the system
via USB Serial port communication.

Keywords—Reinforcement Learning, Deep Q-Learning, Biped
Walking Robot, Two Legged Robot, Hardware Biped Robot

I. INTRODUCTION

Exhibiting human like actions and behavior is essential for

robots that are intended to help, service and co-exist with

humans. Amongst many complex control problems that are

involved in achieving human like behavior in robots, biped

walking or the action of two legged waking is one of the

most challenging tasks. So far simulations and pre-trained

models have been the standard approaches to implement

learning of biped walking by hardware robots. The objective

of this paper is to create and implement a system architecture

which will enable the hardware biped robot to learn to walk

using reinforcement learning without any pre-trained models

or simulations. This proposed method overcomes the bias

in learning trajectories and policies that may occur in a

simulation environment. Also, it is not possible to recreate all

the dynamics of the real world in simulation. Previous studies

and approaches on Biped walking of robot using reinforcement

learning have explored a variety of methods as in [1], [2], [3],

[4]. [5] is a model based reinforcement learning approach that

achieves the given tasks much faster without the knowledge

of the environment. However, [6] requires lot of time to

learn the controller and [7] needs a highly stable mechanical

system. Some bipeds implemented tried different body with

short torso, rounded foot and without ankle joints. These biped

robots have only 4 degrees of freedom and controlling biped

walking trajectories with the famous ZMP approach [8], [9] is

impossible or very difficult to implement hence, an alternative

controller design must be used. The body dynamics of human

given in [10] is used as the nominal trajectory in Poincare-

Map-Based approaches. Interestingly many alternatives have

focused on matching the natural dynamics of the biped to

desired walking cycle timing. In [3] they have used phase os-

cillators to estimate the appropriate walking cycle timing [11].

A chapter on [12] describes a biologically inspired two

layered biped learning system comprising a bottom level CPG

(central pattern generator) and a top-level RL (reinforcement

learning) module. In order to cope with the change in the en-

vironment, in the above mentioned approach, they have used a

mental simulation based reinforcement learning approach [5],

[13], [14] in which the learning system interacts only with

the above mentioned mentally simulated model. So, if the

environment model is identified properly, policy parameters

can be improved within the environment, without the need for

physical biped robots. However, this model is not suitable for

implementing physical biped robots.

Although many alternatives of biped locomotion has been

studied for a long time, it is only in the past 20 years,

that physical robots have started to perform bipedal walking,

this can be seen as the result of development of super

fast computers. There were static walking robots [15]. The

major drawback of this was that the control architecture in

these models had to ensure that the center of gravity(COG)

projection on the ground was always inside the area of foot

support. This approach was inefficient because only slow

walking speeds was possible, that too only on flat surfaces.

The alternative was robots with dynamic walking [16], In these

robots the COG projection can be outside the area of support

of foot, but the zero momentum point (ZMP), which is the

point where the total angular momentum is zero, cannot be

outside the area of support of the foot. With dynamic walking

robots faster walking speeds was possible, running [17], stair

climbing [18], [19], execution of successive flips [20], and

even walking with no actuators [21]. Planar biped robot under

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRDV06013 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 51

|
∈ ∈ ∈ → |

a pure sensor driven controller such [22] is an example of real

time physical robots with real time interaction with the virtual

learning agent.

II. MATERIALS AND METHODS

The connections between each hardware component is es-

tablished using standard 10 cm, Male - Male, Male - Female,

Female - Male and Female - Female jumper cables and single

lead wires. The connection between the microcontroller and

the local machine is established using a USB AB cable.

The circuit is connected using 48 mm x 35 mm x 10 mm

mini breadboards. These set of 3 breadboards is enclosed

by the external container. The actuators used are 28BYJ-

48 stepper motors which takes 2048 steps for one complete

revolution. It is an unipolar five wired stepper motor and it

requires a motor driver, ULN2003A is used, for connecting

it to the microcontroller. The biped robot uses ADXL345

accelerometer. It can take 13-bit high resolution measurements

enabling identification of inclination changes less than one

degree. The microcontroller use is the Arduino Mega 2560

based on the ATmega2560. It can connect to a computer with

AB/USB cable. The power source used is a 7.5 Volt, 1100

mAh two cell rechargeable Lithium-ion battery. It is housed

inside the external container along with the microcontroller

and the stepper motor drivers. The body or the central frame

of the biped robot is a 90 mm x 90 mm x 45 mm cuboid

shaped 4 mm thick cardboard box. This box encloses the

breadboard circuit of the accelerometer sensor along with

indication LED lights. These LED lights indicates the state

of the communication with the local machine. The body

also houses all the wiring for the six stepper motors and

accelerometer from the external container. The legs of the

biped robot are a set of 3-D printed models. The 3-D models

were first developed using two software Blender 2.81 and

Autodesk Inventor Professional 2020 based on the dimensions

of the stepper motor, body, and the ball bearings. Each leg

is divided into three components; upper leg and lower leg

depicted in Fig. 1, the foot shown in Fig. 2 and body-leg

interface shown in Fig. 3.

A. Reinforcement Learning

Reinforcement learning differs from supervised learning in

the way that it does not need labeled input/output pairs to be

Fig. 1. Lower Leg

present. Amongst several algorithms for reinforcement learn-

ing [23], this approach uses Deep Q Learning. Typically, the

environment is stated in the form of a Markov decision process

or MDP, because many reinforcement learning algorithms for

this context utilize dynamic programming techniques.

1) Markov Decision Process: A Markov Decision Process

is a tuple (S, A, T, R) where;

• S is the set of different states, in this case state is

represented by the 3 - Dimensional orientation values plus

its sign-inverted values (x, y, z, -x, -y, -z) of the robot at

a given instant t.

• A represents a set with different actions that can be taken

at each time t. There are twelve actions that the robot can

take, move each of the six stepper motor in clockwise or

anti-clockwise direction

• T is called the transition rule:

– T :(at A, st S, st+1 S) P(st+1 st , at) where

P(st+1 st , at) is the probability that the future state

is st+1 given that the current state is st and the

action played is at. The distribution of probability

of the future states at time t + 1 is given by T

given the current state and the action taken at time

t. Hence, we can predict the future state st+1 by
a drawing a random value from the distribution

T : st+1 ∼ T (at , st , .)
• R is the reward function:

– Reward gained for choosing action at in the state

st is given by rt .

After defining the MDP, it is important to remind that it relies

on the following assumption: the probability of the future state

Fig. 2. Foot

Fig. 3. Body - Leg Interface

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRDV06013 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 52

| |

∈ → ∈

∼

∈

−

∈ ∈ → ∈

W : a ∈ A → . with τ ≥ 0
ja

t t t

st+1 only depends on the current state st and action at , and

doesn’t depend on any of the previous states and actions. That

is:

P(st+1 s0, a0, s1, a1, ..., st , at) = P(st+1 st , at)
Many complex MDP’s are used in robot navigation such

as [24].

2) Policy Function: The policy function π is exactly the

function that, given a state st , returns the action at:

π : st S at A

Let’s denote by Π the set of all the policy functions. Then

the choice of the best actions to play becomes an optimization

problem. Indeed, it comes down to finding the optimal policy
π

∗
that maximizes the accumulated reward:

π
∗=ar gmaxπ∈Π

.
t ≥0 R(π (st), st)

• When TDt (at , st) is high, it receives "good surprise".

• When TDt (at , st) is low, it receives "frustration".

The temporal difference calculated is used in the last next step

of the Q learning algorithm to reinforce (a,s) pair from time t-

1 to t, with the help of the equation:

Qt (at , st) = Qt−1 (at , st) + αTDt (at , st)
In this point of view, the Q-values measure the accumulation

of the positive or negative temporal difference associated with

the state action pair (at , st). In the surprise or positive case,

reinforcement takes place, and in the frustration or negative

case, weaking of the AI takes place. The objective is to learn

Q-values that will fetch more positive values.

Based on this, the decision of action to be taken usually

relies on the Q-value Q(a , s). If the action a taken in the state
3) Future Cummulative Reward: Rt = R(at , st) +

R(at+1, st+1) + ... + R(an, sn) = rt + rt+1 + ... + rn
However we can still improve the model. The elements rt ,

rt+1, ..., and rn are values we are trying to estimate with the

reward function R. At time t we are unsure of the reward in

this future time, the more we look into the future the more

uncertain it is. In other words, the larger is t’ , the larger is the

variance of the estimated reward rt+tj . So, in order to fix that

we have to discount each of the single rewards in the future,

and the discount has to subsequently increase based on how

further we are in to the future. So to do this we have to take

the discounted sum of rewards:

Rt = rt + γrt+1 + γ2rt+2... + γn−t rn

where γ ∈ [0, 1]. That way the higher is t’, the smaller is

γt’ , and therefore the more rt+tj is discounted. γ is called the
discount factor. The closer γ is to 0, the more the AI will try

to optimize the current reward rt . The closer γ is to 1, the

more the AI will aim to optimize the future reward.

4) Q-Value: Each state and action pair (a,s) we have an

associated numeric value Q(a,s):

Q : (at A, st S) Q(at , st) R

We will say that Q(a, s) is "the Q-value of the action a

played in the state s".

5) Temporal Difference: At the beginning t = 0, all the Q-
values are initialized to 0. Now let’s suppose we are at time

t, in a certain state st . We play the action at and we get the

reward rt . Then we take a random draw from the T(at , st , .)
distribution, which leads us to the next state st+1:

st+1 T (at , st , .)
We can now introduce the temporal difference, which is at

the heart of Q-Learning. The temporal difference at time t,

denoted by TDt (at , st), is the difference between:

• rt + γmaxa (Q(a, st+1)), γ [0, 1], that is the reward rt

obtained by playing the action at in the state st , plus a

percentage (which is our previous discount factor γ) of
the Q-value of the best action played in the future state
st+1,

• and Q(at , st), that is the Q-value of the action at taken

in the state st , thus leading to

TDt (at , st) = rt + γmaxa (Q(a, st+1)) Q(at , st)

TDt (at , st) is like an intrinsic reward. The Q-values will be

learned in such a way that:

st is has a large Q value Q(at ,st) associated to it, the AI has

higher chances of choosing at . And if the Q value associated is
low the AI will have less inclination in considering the action

at .
There are several ways of obtaining the best action to take.

First, when being in a certain state st , we could simply take

a with which we have the maximum of Q(a, st):
a = argmaxa (Q(a, s))

But experience has shown that this is not the best option.

A better solution is the softmax method. The softmax method

consists of considering for each state s the following distribu-
tion:

ex p(Q(s, a))τ
s ex p(Q(s, aj))τ

We get the action to take by picking a random value from
that distibution:

a ∼ Ws (.)

III. PROPOSED SYSTEM

The idea is to let the robot learn to walk without any

simulations or pre-trained models. This is ideal because it

overcomes bias in learning trajectories and policies that may

occur in a simulation environment. And also taking into

consideration that all the dynamics of the real world cannot be

recreated in a simulation, this approach seems to be a potential

solution. However, letting the physical robot to learn without

any heuristic data comes with a price. The problem is the

time that the physical robot takes to fall, get up and learn to

walk compared to the incredibly fast simulations that achieves

the same in significantly less time. In order to compensate

for this time factor, the proposed system involves a robot that

learns to walk in a constrained environment which will speed

up the learning process since, the process(actions) of falling

and getting up is eliminated as described below, this makes the

system comparatively faster than a free roaming robot learning

to walk by falling and getting up.

The system consists of two parts, as depicted in Fig. 4,

one the neural network model that exists in the local

machine and second the physical robot and its associated

components. The neural network model uses a simple deep Q-

learning algorithm with three hidden layers. The first hidden

layer has twenty-four nodes, the second with eighteen nodes

and the third with fourteen nodes. The input and output layer

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRDV06013 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 53

had six and twelve nodes respectively. The neural network

was fully connected with random initial weights and Adam

optimizer [25]. The model parameters such as the learning

rate, discounting factor(gamma) and temperature parameter

are determined by experimentation. The modal uses Smooth

L1-loss as the loss function. The temperature parameter is a

random value obtained by trial and error, it determines how

sure the RL agent is in taking the action. It is multiplied

with the softmax value of the actions. The 3-Dimensional

orientation of the robot at a particular instant is obtained from

an accelerometer sensor and it along with its sign inverted

values (positive to negative and vice versa) is used as the

input state to the deep neural network. The accelerometer

readings are of the form (x, y, z, -x, -y, -z) which represent

the acceleration of the robot in the respective axis expressed

in (m/s2) or in G-forces (g). Since the robot doesn’t undergo

very fast movements the value is usually in the range of -2 to

2 Table I . Using the orientation data the level of tilt of the

robot is determined.

If the tilt exceeds a particular threshold value, which again

is determined by experimentation, the reinforcement learning

agent is given the maximum negative reward as going beyond

the threshold tilt value corresponds to falling of the robot

however, the robot doesn’t fall as it is suspended and continues

to walk. This is done overcome the significant delay of the

robot actually falling down and getting back up. Maintaining

the tilt within a certain range provides the agent with a small

positive reward enabling to understand that it is supposed to

maintain the balance. The output layer of the deep neural

network consists of twelve neurons, corresponding to the

twelve actions or Q-values, where each Q-value represents the

rotation of the corresponding stepper motor by ten steps in

that particular direction, six clockwise and six anti-clockwise

respectively for each stepper motor. Each time the best action

is determined by the action selection policy which takes the

softmax of the twelve values which is then multiplied with the

temprature parameter.

The hardware biped robot consists of two physical sections,

one is the body of the biped walking robot with the two

legs housing all the six stepper motors and the accelerometer

sensor, second is the external container housing the Arduino

microcontroller and the power source which is connected to

local machine via USB Serial port communication at 250000

bit baud rate. The six joints of the legs I.e. hip, knee and

ankle joints of both the leg are connected to the respective

stepper motor on one side and a small 6 mm(inner diameter)

ball bearing on the other side. The ball bearing is used to

distribute the load of body on the leg thereby reducing the

amount of strain on the stepper motor. The robot is suspended

from the top support and stands on top of two discs. These

discs are freely movable, hence when the robot tries to walk

the discs acts as a moving platform. The suspension prevents

the robot from falling and stepping out of the discs.

In order to prevent still state where the robot uses the

suspension to stay still and not move there by ensuring

continuous gain of positive reward, a small negative reward

is given I.e. the robot is punished if it stays still instead of

trying to walk.

Fig. 4. Biped Robot with the walking environment

TABLE I
SAMPLE ACCELEROMETER READINGS

 Xa Ya Za

1.05 0.04 0.11
1.02 -0.07 0.11
1.04 -0.02 0.19

 0.98 0.01 0.07

IV. RESULT

A gradual increase in the rewards obtained by the RL

agent can be seen after experimenting with different network

parameters. Fig. 5 shows the reward window score curve after

3000 epochs starting with random initial weights and with

temperature parameter(T) 700.

Fig. 5. 3000 epochs T = 700

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRDV06013 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 54

The reward window score is value that can be used to

visually represent whether the RL agent is learning the right

set of actions, in this case learning to walk. It is the average of

the last n rewards obtained by the RL agent, here the value of

n used is 1000. This score is plotted against each epoch. The

initial spike in all the curves are due to the stable standing

state before the first action performed by the biped robot. In

order to identify global maxima, several times the model was

run with different initial weights, number of epochs and

temperature parameters. Fig. 6 shows the reward curve with

4000 epochs and temperature parameter set to 7000.

As we can see from Fig. 7 and Fig. 8 setting the temperature

parameter T to smaller value decreases the reward scores and

also results in not so stable action selections, even though the

number of epochs is higher (6000).

After exploring and tweaking other parameters such as the

learning rate and discounting factor gamma, a model with a

close to stable action selection and some gradual increase in

the reward widow was obtained, as seen in Fig. 9, Fig. 10.

V. FUTURE WORK

The results from this approach shows that there is a potential

of physical robots learning to walk without pre-trained models

and simulations, however to be able to establish it concretely

many factors have to be ensured and validated about the

system. The motors and microcontroller used in this system

are those that are available for many other use cases and

not custom manufactured for this purpose. Also, there are

several stages that lack precision and completeness in this

implementation, when it comes to the hardware environment,

as most of them were built with commercially available tools

and materials. With respect to the reinforcement learning

agent several different aspects are yet to be explored, such as

different optimizers, network architecture, discounting factor,

etc... Improving on these factors while also considering meth-

ods that can scale this approach well, allowing it to fit into

larger and complex systems to achieve autonomous learning

Fig. 6. 4000 epochs T = 7000 Fig. 8. 3000 epochs T = 100

Fig. 7. 6000 epochs T = 100 Fig. 9. 1000 epochs T = 15000

http://www.jetir.org/

© 2020 JETIR May 2020, Volume 7, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIRDV06013 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 55

Fig. 10. 1000 epochs T = 30000

by robots without simulations will be ideal.

VI. CONCLUSION

The implementation of biped robot learning to walk with

deep Q learning without pre-trained models and simulations

was successful in the way that the reinforcement learning agent

was able to obtain a gradual positive growth in the reward

window score as mentioned in the results. The model was

able to learn to maintain balance with the given 3 dimensional

orientation input, also slowly increasing its stability with

respect to its exploration of actions.

REFERENCES

[1] C.-M. Chew and G. A. Pratt, “Dynamic bipedal walking assisted
by learning,” Robotica, vol. 20, no. 5, pp. 477–491, 2002. [Online].
Available: 10.1017/S0263574702004290

[2] J. Morimoto, J. Nakanishi, G. Endo, G. Cheng, C. G. Atkeson, and
G. Zeglin, “Poincaré-Map-Based Reinforcement Learning For Biped
Walking,” in Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, 2005, pp. 2381–2386.

[3] J. Morimoto, G. Cheng, C. G. Atkeson, and G. Zeglin, “A simple rein-
forcement learning algorithm for biped walking,” in IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004, vol. 3, 2004.

[4] Y. Yuan, Z. Li, T. Zhao, and D. Gan, “DMP-Based Motion Generation
for a Walking Exoskeleton Robot Using Reinforcement Learning,” pp.
3830–3839, 2020. [Online]. Available: 10.1109/TIE.2019.2916396

[5] K. Doya, “Reinforcement Learning in Continuous Time and
Space,” Neural Computation, vol. 12, no. 1, pp. 219–
245, 2000. [Online]. Available: 10.1162/089976600300015961;https:
//dx.doi.org/10.1162/089976600300015961

[6] H. Benbrahim and J. A. Franklin, “Biped dynamic walking using
reinforcement learning,” Robotics and Autonomous Systems, vol. 22, no.
3-4, pp. 283–302, 1997. [Online]. Available: 10.1016/s0921-8890(97)
00043-2;https://dx.doi.org/10.1016/s0921-8890(97)00043-2

[7] R. Tedrake, T. W. Zhang, and H. S. Seung, “Stochastic policy gradient
reinforcement learning on a simple 3D biped,” in 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), vol. 3, 2004.

[8] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
of Honda humanoid robot,” in Proceedings. 1998 IEEE International
Conference on Robotics and Automation (Cat. No.98CH36146), vol. 2,
1998.

[9] J. . Yamaguchi, A. Takanishi, and I. Kato, “Development of a biped
walking robot compensating for three-axis moment by trunk motion,” in
Proceedings of 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’93), vol. 1, 1993.

[10] T. Gélat and Y. Brenière, “Adaptation of the gait initiation process for
stepping on to a new level using a single step,” Experimental Brain
Research, vol. 133, no. 4, pp. 538–546, 2000. [Online]. Available:
10.1007/s002210000452;https://dx.doi.org/10.1007/s002210000452

[11] K. Tsuchiya, S. Aoi, and K. Tsujita, “Locomotion control of a biped
locomotion robot using nonlinear oscillators,” in Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003) (Cat. No.03CH37453), vol. 2, 2003, pp. 1745–1750.

[12] J. Morimoto, “Humanoid Locomotion and the Brain,” Humanoid
Robotics and Neuroscience: Science, Engineering and Society, 2015.

[13] J. Morimoto and C. G. Atkeson, “Nonparametric representation of an
approximated Poincaré map for learning biped locomotion,” Autonomous
Robots, vol. 27, no. 2, pp. 131–144, 2009. [Online]. Available: 10.1007/
s10514-009-9133-z;https://dx.doi.org/10.1007/s10514-009-9133-z

[14] R. S. Sutton, “Planning by incremental dynamic programming,” in Pro-
ceedings of the Eighth International Conference on Machine Learning.
Morgan Kaufmann, 1991, pp. 353–357.

[15] I. Kato, S. Ohteru, H. Kobayashi, K. Shirai, and A. Uchiyama,
“Information-Power Machine with Senses and Limbs,” in On Theory
and Practice of Robots and Manipulators. International Centre for
Mechanical Sciences (Courses and Lectures), vol. 201. Springer, 1974.

[16] A. Takanishi, G. Naito, M. Ishida, and I. Kato, “Realization of plane
walking by the biped walking robot WL-10R, Robotic and Manipulator
Systems,” pp. 283–393, 1982.

[17] M. H. Raibert, “Hopping in legged systems — Modeling and simulation
for the two-dimensional one-legged case,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-14, no. 3, pp. 451–
463, 1984. [Online]. Available: 10.1109/tsmc.1984.6313238;https:
//dx.doi.org/10.1109/tsmc.1984.6313238

[18] A. Takanishi, H.-O. Lim, M. Tsuda, and I. Kato, “Realization of dynamic
biped walking stabilized by trunk motion on a sagittally uneven surface,”
in EEE International Workshop on Intelligent Robots and Systems,
Towards a New Frontier of Applications, vol. 1, 1990, pp. 323–330.

[19] Y. Kurcmatsu, O. Katayama, M. Iwata, and S. Kitamura, “Autonomous
trajectory generation of a biped locomotive robot,” in IEEE International
Joint Conference on Neural Networks, vol. 3, 1991, pp. 1983–1988.

[20] J. & Hodgins and M. Raibert, “Biped Gymnastics,” 1990.
[21] T. McGeer, “Passive Dynamic Walking,” The International

Journal of Robotics Research, vol. 9, no. 2, pp. 62–
82, 1990. [Online]. Available: 10.1177/027836499000900206;https:
//dx.doi.org/10.1177/027836499000900206

[22] T. Geng, B. Porr, and F. Wörgötter, “Fast Biped Walking with a Sensor-
driven Neuronal Controller and Real-time Online Learning,” The
International Journal of Robotics Research, vol. 25, no. 3, pp. 243–259,
2006. [Online]. Available: 10.1177/0278364906063822

[23] C. Szepesvári, “Algorithms for Reinforcement Learning,” Synthesis
Lectures on Artificial Intelligence and Machine Learning,
vol. 4, no. 1, pp. 1–103, 2010. [Online]. Available:
10.2200/S00268ED1V01Y201005AIM009

[24] G. Theocharous, K. Rohanimanesh, and S. Maharlevan, “Learning
hierarchical observable Markov decision process models for robot navi-
gation,” in IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), vol. 1, 2001, pp. 511–516.

[25] Z. Zhang, “Improved Adam Optimizer for Deep Neural Networks,”
IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), pp. 1–2, 2018.

http://www.jetir.org/

